
#### **BIOMASS CONVERSION COURSE**

Doctoral School EPFL

Bioethanol – Part 2

## Starch Bioethanol Industry

 Starch is a polysaccharide carbohydrate, which consists of a large number of Dglucose-monomers



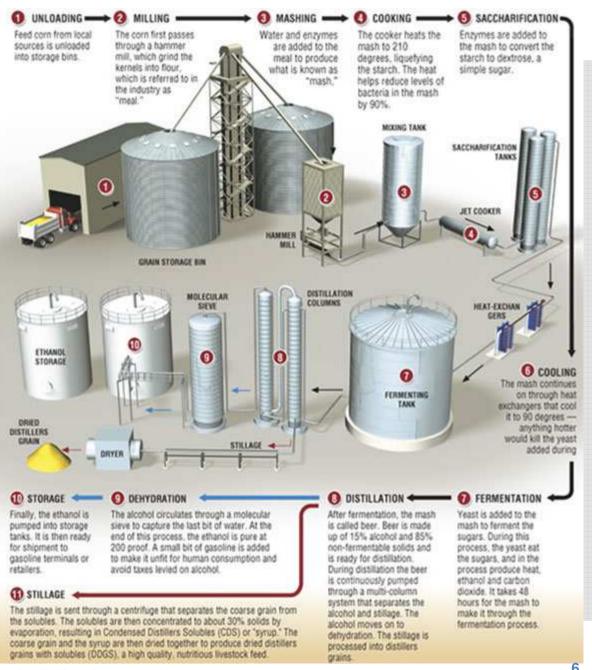
 Hydrolysis is required to breakdown this structure, making glucose available for fermentation

#### Starch Bioethanol Industry


- Two types of hydrolysis are known: enzymatic hydrolysis and acid hydrolysis.
- The enzymatic hydrolysis of starch is done by amylases enzymes.
- Important factors include: substrates, enzyme activity and reaction conditions (e.g. temperature, pH).
- Starchy materials have to be cooked at high temperatures (413-453 K) in order to obtain high bioethanol yields.

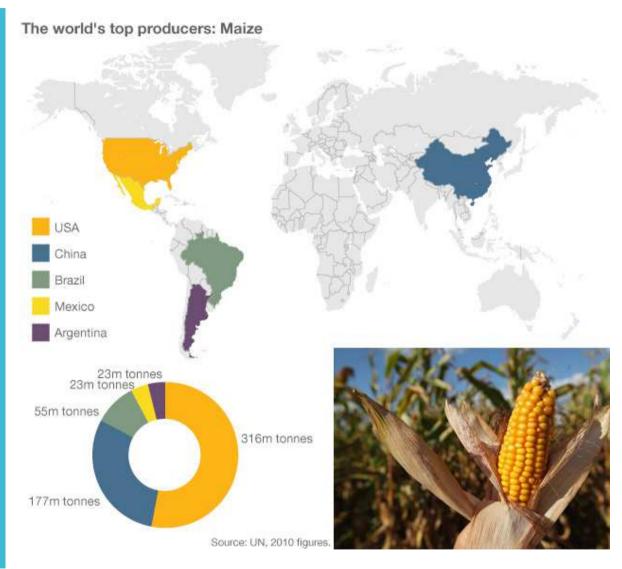
## Corn Bioethanol Industry

- Starchy materials (e.g. wheat, corn and barley,...)
- Corn is the main source of starch for fuels



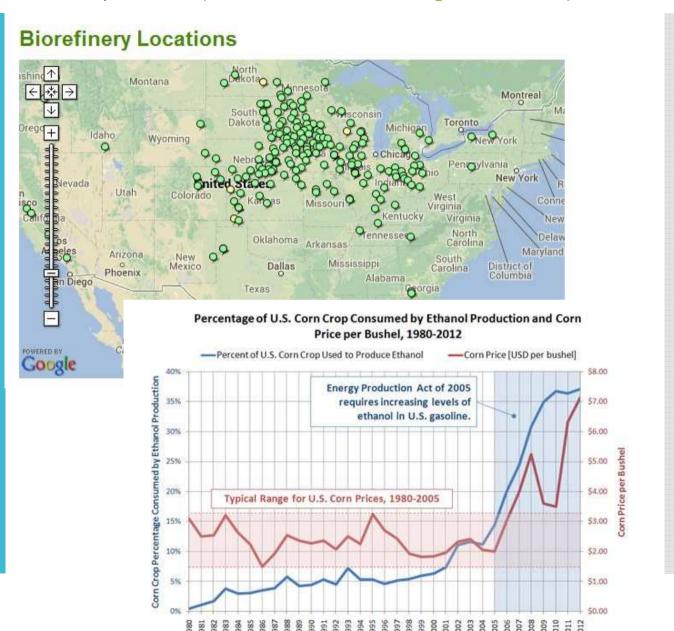

Source: http://www.responsiblebusiness.eu/display/rebwp7/Starchy+feedstocks




| Kernel part   |               | Percent of kernel | Starch              | Oil              | Protein           | Ash               | Sugar              |
|---------------|---------------|-------------------|---------------------|------------------|-------------------|-------------------|--------------------|
| Endosperm     | Mean          | 82.9              | 97.6                | 0.8              | 8.0               | 0.3               | 0.62               |
|               | Range         | 81.8 - 83.5       | 86.4 - 88.9         | 0.7 - 1.0        | 6.9 - 10.4        | 0.2 - 0.5         | 0.5 - 0.8          |
| Germ          | Mean          | 11.1              | 8. <sub>3</sub>     | 33.2             | 18.4              | 10.5              | 10.8               |
|               | Range         | 10.2 - 11.9       | 5.1 - 10.0          | 31.1 - 35.1      | 17.3 - 19.0       | 9.9 - 11.3        | 10.0 - 12.5        |
| Pericarp      | Mean          | 5.3               | 7·3                 | 1.0              | 3.7               | 0.8               | 0.34               |
|               | Range         | 5.1 - 5.7         | 3.5 - 10.4          | 0.7 - 1.2        | 2.9 - 3.9         | 0.4 - 1.0         | 0.2 - 0.4          |
| Tip cap       | Mean          | 0.8               | 5·3                 | 3.8              | 9.1               | 1.6               | 1.6                |
|               | Range         | 0.8 - 1.1         | NA                  | 3.7 - 3.9        | 9.1 - 10.7        | 1.4 - 2.0         | NA                 |
| Entire kernel | Mean<br>Range | 100               | 73·4<br>67.8 - 74.0 | 4.4<br>3.9 - 5.8 | 9.1<br>8.1 - 11.5 | 1.4<br>1.37 - 1.5 | 1.9<br>1.61 - 2.22 |

#### Corn Bioethanol Industry




Source: http://goldengrainenergy.com/ /

# Corn Production



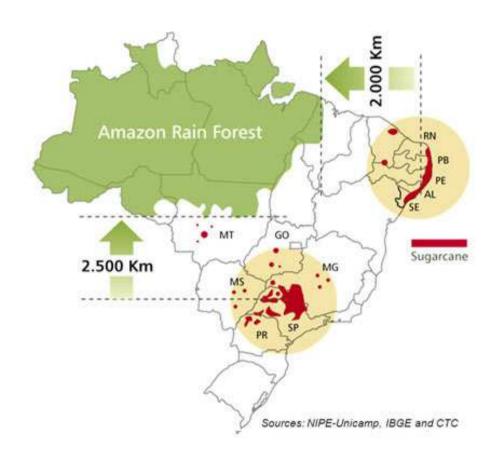
Installed plants <a href="http://www.ethanolrfa.org/bio-refinery-locations/">http://www.ethanolrfa.org/bio-refinery-locations/</a>

Corn Bioethanol Industry



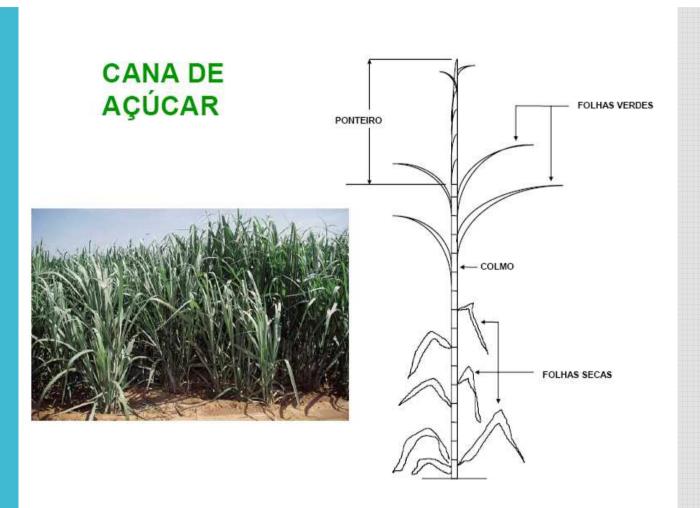
## Fermentation of Sucrose

 Sucrose is a disaccharide and must be hydrolyzed to be fermented


sucrose + water 
$$\rightarrow$$
 glucose + fructose  $C_{12}H_{22}O_{11}$  +  $H_2O$   $\rightarrow$   $C_6H_{12}O_6$  +  $C_6H_{12}O_6$   $\rightarrow$  ethanol + carbon dioxide  $C_6H_{12}O_6(aq)$   $\rightarrow$  .....  $C_2H_5OH(aq)$  + .....  $CO_2(g)$ 

## Sugarcane Production




#### Sugarcane producing regions in Brazil

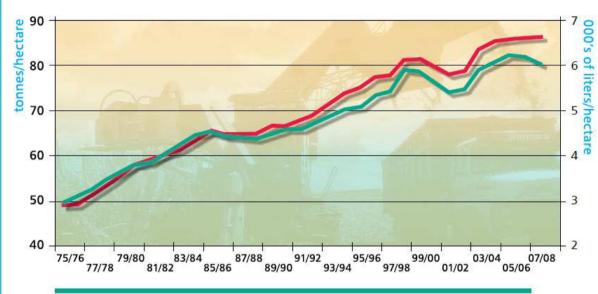
#### Sugarcane Production



Source http://english.unica.com.br/

## Sugarcane Bioethanol





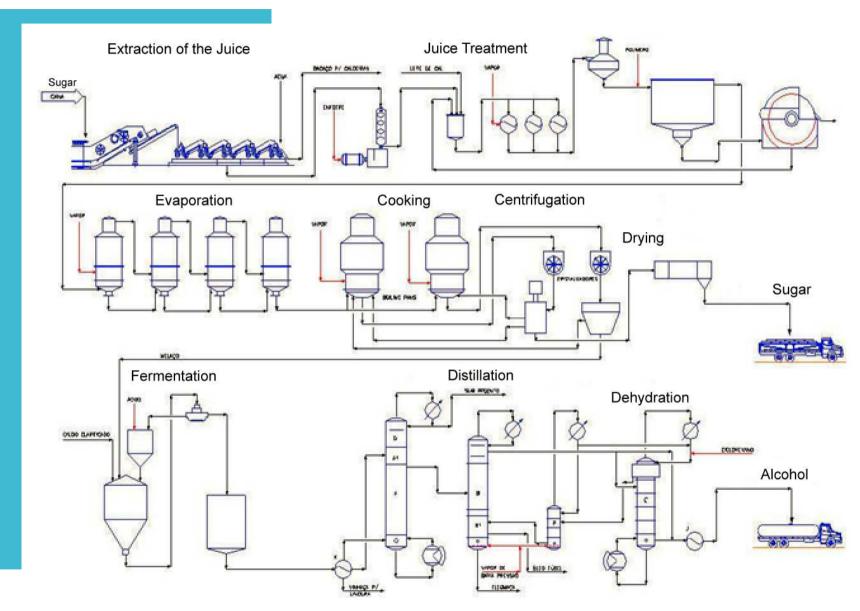

## Sugarcane Bioethanol





## Sugarcane Bioethanol Cultivation Cycle




Sugarcane production (tonnes/hectare)

Ethanol production (liters/hectare)

Source: Unica



Harvesting



Source http://sine.ni.com

# Juice extraction



|         | Unit | Lower value | Upper value |
|---------|------|-------------|-------------|
| Brix    | 0    | 15.7        | 23.1        |
| Sucrose | wt%  | 11.93       | 16.68       |
| Glucose | wt%  | 0.34        | 1.50        |
| Frutose | wt%  | 0.38        | 1.57        |
| рН      |      | 4.94        | 5.72        |

• Glucose conversion - Theoretical yield

$$C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$$

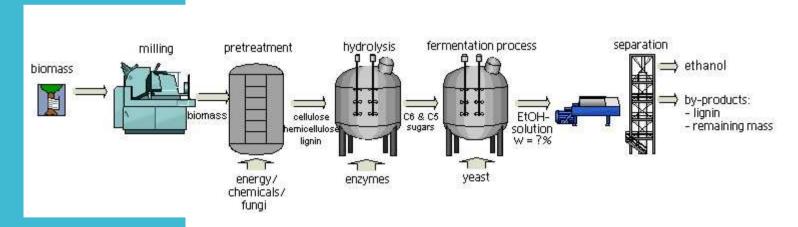
Fermentation

Yield = 92/180 = 0.511 g EtOH/Glucose

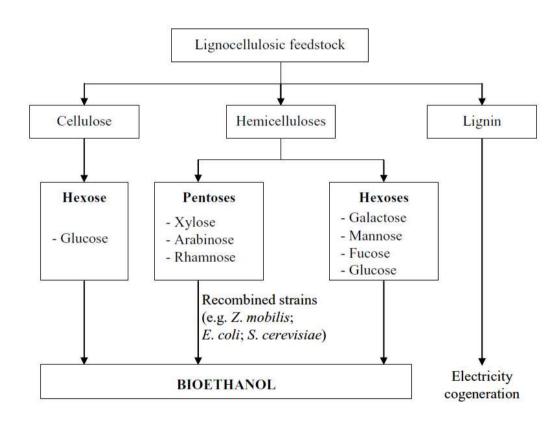
Maximum conversion rate (Pasteur yield): 95%

Industrial conversion rate: 90%

#### Fermentation


| Product         | Fraction of total reduced sugars - wt % (86-92% conversion) |  |  |  |
|-----------------|-------------------------------------------------------------|--|--|--|
| Bioethanol      | 40-47                                                       |  |  |  |
| CO <sub>2</sub> | 41-45                                                       |  |  |  |
| Yeast (biomass) | 1-5                                                         |  |  |  |
| Glycerol        | 2-9                                                         |  |  |  |
| Succinic acid   | 0.3-1.2                                                     |  |  |  |
| Acetic acid     | 0.1-0.7                                                     |  |  |  |
| Fusel oil       | 0.2-0.6                                                     |  |  |  |

Fusel oil - mixture of alcohols (propanol, butanol, isoamylic, etc.)


By-products derived from bacterial contamination, secondary fermentation, degradation of proteins in the must ,etc.

#### **Biochemical Conversion**

# Lignocellulosic bioethanol

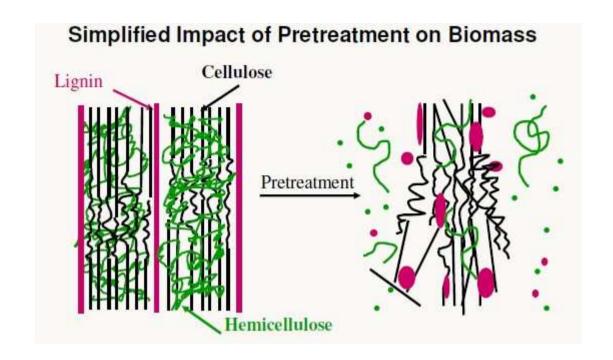


# Lignocellulosic bioethanol



 Cellulose consists of approximately 40 – 50 wt% of dry and provides biomass strength.

### Lignocellulosic bioethanol

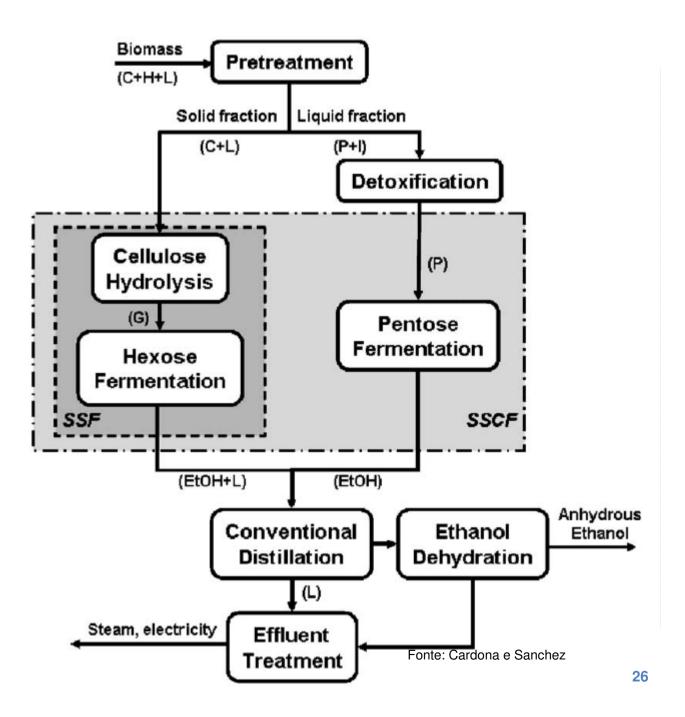

Hemicellulose

- Hemicellulose also known as poiyose accounts for 25 – 35 % of the dry mass.
- Hemicellulose is a composition of numerous polymerized monosaccharides (e.g. glucose, mannose, galactose, xylose, arabinose, 4-O-methyl glucuronic acid and galacturonic acid residues).
- Xylose is the predominant included pentose sugar (C5-sugar).

## Lignocellulosic bioethanol

- Lignin is a highly branched, substituted, mononuclear aromatic polymer in the cell walls of certain biomass, which is often bound to adjacent cellulose fibers, forming a lignocellulosic complex.
- This complex and also lignin alone are mostly resistant to conversion, using microorganisms, as well as chemical reagents.

#### Pre-treatments




- Formation of sugars and/or the ability to form sugars in the hydrolysis process
- Prevention of degradation or loss of carbohydrates
- Avoidance of by-products-formation, which may be prejudicial to hydrolysis and fermentation process
- Improvement of cost effectiveness

#### Pretreatments

| Pre-treatment<br>method        | Chemicals       | Temperature/<br>Pressure | Reaction time<br>(min) | Xylose yield<br>(%) | Downstream<br>enzymatic effect | Costs | Availability |
|--------------------------------|-----------------|--------------------------|------------------------|---------------------|--------------------------------|-------|--------------|
| Dilute acid<br>hydrolysis      | Acid            | > 433 K                  | 2 – 10                 | 75 – 90             | < 85 %                         | +     | Now          |
| Alkaline<br>hydrolysis         | Base            |                          |                        | 60 – 75             | 55 %                           | ++    | Now          |
| Uncatalyzed<br>steam explosion | -               | 433 – 533 K              | 2                      | 45 – 65             | 90 %                           | =     | 2 – 5 year   |
| Acid catalyzed steam explosion | Acid            | 433 – 493 K              |                        |                     | 88 % (2 steps)                 | -     | 2 – 5 year   |
| Ammonia fiber<br>explosion     | Ammonia         | 363 K                    | 30                     |                     | 50 – 90 % (2 steps)            |       |              |
| CO <sub>2</sub> explosion      | CO <sub>2</sub> | 56.2 bar                 |                        |                     | 75 % (2 steps)                 |       |              |

Lignocellulosic bioethanol

